Numéro d'inscription: 34913

TIPE: Décomposition en somme finie de fractions unitaires.

BENDAHI Abderrahim

2021-2022

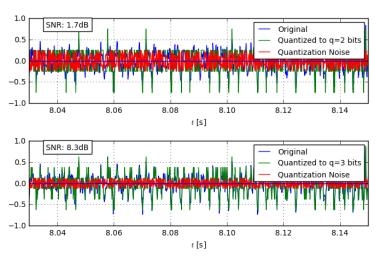
1/50

• Traitement de signaux: applications en médecine.

2/50

- Traitement de signaux: applications en médecine.
- Bruit généré par l'erreur de quantification.

# Exemple



source : https://dspillustrations.com/pages/posts/misc/how-does-quantization-noise-sound.html

# Objectifs:

 Démontrer qu'un nombre rationnel dans un certain intervalle peut être décomposé en somme finie d'inverses de carrés distincts, de cubes distincts.

## Objectifs:

- Démontrer qu'un nombre rationnel dans un certain intervalle peut être décomposé en somme finie d'inverses de carrés distincts, de cubes distincts.
- Trouver des méthodes algorithmiques pour déterminer cette décomposition.

## Exemples '

### Exemples



### **Exemples**



### Exemples

## **Plan**

Théorème de Graham : Cas particulier des sommes finies d'inverses de puissances p-ièmes

## **Plan**

- Théorème de Graham : Cas particulier des sommes finies d'inverses de puissances p-ièmes
- 2 Décomposition pratique : Algorithme Glouton

## **Plan**

- Théorème de Graham : Cas particulier des sommes finies d'inverses de puissances p-ièmes
- Décomposition pratique : Algorithme Glouton
- Oécomposition pratique : Deuxième algorithme

## **Plan**

- Théorème de Graham : Cas particulier des sommes finies d'inverses de puissances p-ièmes
- Décomposition pratique : Algorithme Glouton
- Oécomposition pratique : Deuxième algorithme
- Résultats théoriques établis

6 / 50

### Théorème de Graham

#### Quelques définitions:

Si 
$$S = (s_1, s_2, ...)$$
, on définit:

• P(S) = {  $\sum_{k=1}^{+\infty} \varepsilon_k s_k$  avec  $(\varepsilon_k)$  suite presque nulle prenant la valeur 0 ou 1 }

7 / 50

## Théorème de Graham

### Quelques définitions:

Si 
$$S = (s_1, s_2, ...)$$
, on définit:

- P(S) = {  $\sum_{k=1}^{+\infty} \varepsilon_k s_k$  avec  $(\varepsilon_k)$  suite presque nulle prenant la valeur 0 ou 1 }
- $S^{-1}$  désigne la suite des inverses des termes de S.

BENDAHI Abderrahim

#### Quelques définitions :

• Un réel x est dit **S-accessible** si pour tout  $\varepsilon > 0$ , il existe p dans P(S) tel que  $0 \le p - x < \varepsilon$ .

8 / 50

#### Quelques définitions :

- Un réel x est dit **S-accessible** si pour tout  $\varepsilon > 0$ , il existe p dans P(S) tel que  $0 \le p x < \varepsilon$ .
- On note Ac(S) l'ensemble des nombres S-accessibles.

#### Quelques définitions :

- Un réel x est dit **S-accessible** si pour tout  $\varepsilon > 0$ , il existe p dans P(S) tel que  $0 \le p x < \varepsilon$ .
- On note Ac(S) l'ensemble des nombres S-accessibles.
- Si  $p \in \mathbb{N}^*$ , on note  $H^p$  la suite des inverses de puissances p-ièmes, i.e  $H^p = (1^{-p}, 2^{-p}, 3^{-p}, \ldots)$ .

8 / 50

#### Quelques définitions :

- Un réel x est dit **S-accessible** si pour tout  $\varepsilon > 0$ , il existe p dans P(S) tel que 0 .
- On note Ac(S) l'ensemble des nombres S-accessibles.
- Si  $p \in \mathbb{N}^*$ , on note  $H^p$  la suite des inverses de puissances p-ièmes, i.e.  $H^p = (1^{-p}, 2^{-p}, 3^{-p}, \dots).$
- Un terme  $s_n$  de S est dit remplaçable dans S si  $s_n \leq \sum_{k=1}^{+\infty} s_{n+k}$ .

2021-2022

## Théorème de Sprague (admis)

Soit un entier  $p \ge 1$ . Tout entier naturel assez grand est somme de puissance p-ième d'entiers distincts.

## Théorème 1 (admis)

Le nombre rationnel  $\frac{a}{b}$  est la somme finie de termes distincts de  $H^p$  si et seulement si  $\frac{a}{b}$  est  $H^p$ -accessible. Cela s'écrit:

$$P(H^p) = Ac(H^p) \cap \mathbb{Q}$$

#### Théorème 2

Soit  $S=(s_n) \in (\mathbb{R})^{\mathbb{N}^*}$  qui vérifie:

- $(s_n)$  décroît strictement vers  $(s_n)$
- ② il existe un rang r à partir duquel  $s_n$  est remplaçable dans S. Alors:

$$Ac(S) = \bigcup_{z \in P_{r-1}} [z, z + \sigma[$$

où  $P_{r-1} = P((s_1, ..., s_{r-1}))$   $(P_0 = \{0\})$  et  $\sigma = \sum_{k=r}^{+\infty} s_k$  (éventuellement infinie).

11/50

#### Théorème 3

Soit  $S=(s_n) \in (\mathbb{R})^{\mathbb{N}^*}$  qui vérifie:

- $(s_n)$  décroît strictement vers  $(s_n)$
- ② il existe un rang r tel que n < r implique que  $s_n$  n'est pas remplaçable dans S, et  $n \ge r$  implique que  $s_n$  est remplaçable dans S.

Alors Ac(S) est l'union disjointe d'exactement  $2^{r-1}$  intervalles semi-ouverts de longueur  $\sum_{k=r}^{\infty} s_k$ .

12 / 50

#### Lemme 1

Soit  $S=(s_n)$  une suite à termes positifs telle qu'il existe m tel que  $n \ge m \Rightarrow s_n \le 2s_{n+1}$ .

Alors,  $n \ge m \Rightarrow s_n$  est remplaçable dans S (i.e.,  $s_n \le \sum_{k=1}^{+\infty} s_{n+k}$ ).

13 / 50

#### Lemme 2

On suppose que  $k \le (2^{1/p} - 1)^{-1}$  et  $k^{-p}$  est remplaçable dans  $H^p$ . Alors  $(k+1)^{-p}$  est aussi remplaçable dans  $H^p$ .

14 / 50

#### Lemme 3

On suppose que  $k \ge (2^{1/p} - 1)^{-1}$ .

Alors  $k^{-p}$  est remplaçable dans  $H^p$ .

En combinant les théorèmes et lemmes précédents, il vient :

#### Théorème 4

Soit p un entier naturel non nul. Soit  $t_p$  le plus grand entier k tel que  $k^{-p} > \sum_{j=1}^{+\infty} (k+j)^{-p}$  et  $P = \{\sum_{j=1}^{t_p} \varepsilon_j j^{-p} : \varepsilon_j = 0 \text{ ou } 1 \}$ . Alors le nombre rationnel  $\frac{a}{b}$  peut être écrit comme une somme finie d'inverses de puissances p-ièmes distinctes si et seulement si:

$$\frac{a}{b} \in \bigcup_{z \in P} [z, z + \sum_{k=1}^{+\infty} (t_p + k)^{-p} [$$

Voici un tableau regroupant les valeurs de  $t_p$  pour p = 1, 2, 3.

| р | t <sub>p</sub> | $(2^{1/p}-1)^{-1}$ |
|---|----------------|--------------------|
| 1 | 0              | 1                  |
| 2 | 1              | 2                  |
| 3 | 2              | 3                  |

#### Corollaire 1

Un nombre rationnel positif  $\frac{a}{b}$  est la somme finie d'inverses de carrées distincts si et seulement si :

$$\frac{a}{b} \in [0, \frac{\pi^2}{6} - 1[ \cup [1, \frac{\pi^2}{6}[$$

### Corollaire 1

Un nombre rationnel positif  $\frac{a}{b}$  est la somme finie d'inverses de carrées distincts si et seulement si :

$$\frac{a}{b} \in [0, \frac{\pi^2}{6} - 1[ \cup [1, \frac{\pi^2}{6}[$$

#### Corollaire 2

Un nombre rationnel positif  $\frac{a}{b}$  est la somme finie d'inverses de cubes distincts si et seulement si :

$$\frac{a}{b} \in [0, \zeta(3) - \frac{9}{8} [\cup [\frac{1}{8}, \zeta(3) - 1[\cup [1, \zeta(3) - \frac{1}{8} [\cup [\frac{9}{8}, \zeta(3)[$$

## Décomposition pratique : Algorithme Glouton

### Idée de l'algorithme :

- glouton(0) renvoie la liste vide [].
- si k est le plus petit entier qui vérifie  $\frac{1}{k^p} \le x$ , alors glouton(x) = [k] + glouton(x  $\frac{1}{k^p}$ ).

19 / 50

## Décomposition pratique : Algorithme Glouton

#### Résultats pour la décomposition en inverses de carrés :

| Nombre                                        | Décomposition obtenue            | Temps d'excécution |
|-----------------------------------------------|----------------------------------|--------------------|
| $\frac{1}{6}$                                 | [3, 5, 9, 18, 90]                | 0.01779 s          |
| 1 20                                          | [5, 10]                          | 0.0917911 s        |
| $\frac{1}{2}$ , $\frac{1}{3}$ , $\frac{1}{5}$ | Profondeur maximale de récursion | -                  |

Table: Résultats de l'algorithme glouton pour la décomposition en inverses de carrés

## Décomposition pratique : Algorithme Glouton

#### Résultats pour la décomposition en inverses de cubes :

| Nombre                                    | Décomposition obtenue            | Temps d'excécution |
|-------------------------------------------|----------------------------------|--------------------|
| $\frac{1}{6}$                             | [2, 3, 6]                        | 0.0159             |
| 1 200                                     | [6, 14, 56, 160, 1260, 10080]    | 0.154907           |
| $\frac{1}{7}, \frac{1}{15}, \frac{1}{30}$ | Profondeur maximale de récursion | -                  |

Table: Résultats de l'algorithme glouton pour la décomposition en inverses de cubes

**Conclusion :** L'algorithme Glouton n'est pas assez efficace! De plus, les théorèmes à notre disposition ne permettent pas de prouver sa terminaison.

## Décomposition pratique : Deuxième algorithme

Idée de l'algorithme : Il s'agit d'un algorithme récursif qui repose sur la remarque suivante (par exemple dans le cas des inverses de carrés):

$$r = \frac{1}{x^2} + \frac{1}{y^2} (avecx < y) \Rightarrow r < \frac{2}{x^2}$$
$$\Rightarrow x^2 < \frac{2}{r}$$
$$\Rightarrow x < \sqrt{\frac{2}{r}}$$

Ainsi, il suffit de tester pour tout x tel que  $\sqrt{\frac{1}{r}} \le x < \sqrt{\frac{2}{r}}$  si  $\frac{rx^2 - 1}{x^2}$  est un carré parfait.

Tant qu'on n'a pas pu décomposer r avec N termes, on incrémente N.

## Décomposition pratique : Deuxième algorithme

- Choix du rang du début de la recherche,
- L'algorithme détermine une décomposition utilisant un nombre minimal de termes.

### Analyse de l'algorithme :

- Terminaison : Les théorèmes fournissent l'existence de N tel que r se décompose en somme finie de N termes d'inverses de puissances n-ièmes, cela fournit la terminaison de l'algorithme
- 2 Correction : Elle est fournie par la remarque faite précédemment.

24 / 50

Résultats pour la décomposition en inverses de carrés :

| Nombre                                                               | Décomposition obtenue                   | Temps d'excécution |
|----------------------------------------------------------------------|-----------------------------------------|--------------------|
| $\frac{1}{6}$                                                        | [3, 5, 9, 18, 90]                       | 0.0419 s           |
| $\frac{1}{3}$                                                        | [2, 4, 7, 60, 84, 420]                  | 0.1304 s           |
|                                                                      | [2, 3, 4, 5, 7, 8, 56, 168, 840]        | 0.12091 s          |
| $\frac{1}{8}$                                                        | [3, 12, 15, 20]                         | 0.0400 s           |
| $ \begin{array}{c} 1\\ \overline{5}\\ 2\\ \overline{5} \end{array} $ | [3, 4, 7, 13, 126, 1316, 59220, 769860] | 0.24684 s          |
| <u>2</u><br><u>5</u>                                                 | [2, 3, 6, 10, 30]                       | 0.02874 s          |

## Résultats pour la décomposition en inverses de carrés :

| Nombre        | Décomposition obtenue              | Temps d'excécution |
|---------------|------------------------------------|--------------------|
| $\frac{3}{7}$ | [2, 3, 4, 20, 21, 84, 140]         | 0.119936 s         |
| 1<br>2020     | [45, 909, 9090]                    | 0.022541 s         |
| 1<br>39       | [7, 14, 90, 370, 4095, 43290]      | 17.41986 s         |
| 1<br>2024     | [45, 2277, 5060, 9108]             | 29.895702 s        |
| 1<br>2022     | [45, 1170, 21905, 109525, 1971450] | 17 h 5 min         |
| $\frac{3}{5}$ | -                                  | Une semaine        |

## Résultats pour la décomposition en inverses de cubes :

| Nombre          | Décomposition obtenue            | Temps d'excécution |
|-----------------|----------------------------------|--------------------|
| $\frac{1}{6}$   | [2, 3, 6]                        | 0.033274 s         |
| $\frac{1}{15}$  | [3, 4, 5, 6, 9, 72, 120]         | 0.08394 s          |
| $\frac{2}{15}$  | [2, 5, 15, 30]                   | 0.0581784 s        |
| $\frac{1}{20}$  | [3, 5, 6, 15, 30]                | 0.04985 s          |
| $\frac{1}{150}$ | [6, 8, 24, 45, 120, 360]         | 4.885971 s         |
| $\frac{1}{7}$   | [2, 4, 8, 16, 35, 45, 120, 1008] | 7.79217 s          |

Décomposition de  $\frac{3}{5}$  en sommes d'inverses de carrés :

En remarquant que  $\frac{3}{5}=\frac{1}{5}+\frac{2}{5}$ , on va essayer de combiner la décomposition de  $\frac{1}{5}$  et de  $\frac{2}{5}$  en veillant à décomposer toute fraction en commun à partir du rang suivant jusqu'à avoir une somme de termes distincts.

| Etape                                              | Liste des termes                                                                                                                            |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{1}{5}$ et $\frac{2}{5}$                     | [2, 3, 3 4, 6, 7, 10, 13, 30, 126, 1316, 59220, 769860]                                                                                     |
| $\frac{1}{3^2}$ à partir de 5                      | [2, 3, 4, 5, 6, 6, 7, 7, 8, 10, 12, 13, 30, 56, 126, 168, 840, 1316, 59220, 769860]                                                         |
| $\frac{1}{6^2} + \frac{1}{7^2} \text{ à partir 8}$ | [2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 10, 11, 12, 13, 24, 30, 56, 70, 126, 168, 308, 840, 1316, 3960, 27720, 59220, 769860]                       |
| $\frac{1}{8^2}$ à partir de 14                     | [2, 3, 4, 5, 6, 7, 8, 9, 10, 10] 11, 12, 13, 14, 15, 20, 21, 24, 28, 30, 56, 70, 126, 168, 168, 308, 840, 1316, 3960, 27720, 59220, 769860] |

| Etape                           | Liste des termes                                                                                                                                                                     |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{1}{10^2}$ à partir de 16 | [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 24, 24, 28, 30, 34, 56, 70, 126, 168, 168, 240, 272, 308, 816, 840, 1316, 3960, 27720, 59220, 769860]               |
| $\frac{1}{24^2}$ à partir de 31 | [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 24, 28, 30, 31, 34, 40, 56, 70, 126, 155, 168, 168, 186, 240, 272, 308, 816, 840, 1316, 3960, 27720, 59220, 769860] |

30 / 50

| Etape                                      | Liste des termes                                                                                                                                                                          |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{1}{168^2} \text{ à partir de } 169$ | [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 24, 28, 30, 31, 34, 40, 56, 70, 126, 155, 168, 175, 186, 240, 272, 308, 600, 816, 840, 1316, 3960, 27720, 59220, 769860] |

31/50

#### Finalement:

$$\frac{3}{5} = \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \frac{1}{8^2} + \frac{1}{9^2} + \frac{1}{10^2} + \frac{1}{11^2} + \frac{1}{12^2} + \frac{1}{13^2} + \frac{1}{14^2} + \frac{1}{15^2} + \frac{1}{16^2} + \frac{1}{17^2} + \frac{1}{20^2} + \frac{1}{21^2} + \frac{1}{24^2} + \frac{1}{28^2} + \frac{1}{30^2} + \frac{1}{31^2} + \frac{1}{34^2} + \frac{1}{40^2} + \frac{1}{156^2} + \frac{1}{70^2} + \frac{1}{126^2} + \frac{1}{155^2} + \frac{1}{168^2} + \frac{1}{175^2} + \frac{1}{186^2} + \frac{1}{240^2} + \frac{1}{272^2} + \frac{1}{308^2} + \frac{1}{600^2} + \frac{1}{816^2} + \frac{1}{840^2} + \frac{1}{1316^2} + \frac{1}{3960^2} + \frac{1}{27720^2} + \frac{1}{59220^2} + \frac{1}{769860^2}$$

32 / 50

#### Finalement:

$$\begin{aligned} \frac{3}{5} &= \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \frac{1}{8^2} + \frac{1}{9^2} + \frac{1}{10^2} + \frac{1}{11^2} + \frac{1}{12^2} + \frac{1}{13^2} + \\ \frac{1}{14^2} + \frac{1}{15^2} + \frac{1}{16^2} + \frac{1}{17^2} + \frac{1}{20^2} + \frac{1}{21^2} + \frac{1}{24^2} + \frac{1}{28^2} + \frac{1}{30^2} + \frac{1}{31^2} + \frac{1}{34^2} + \frac{1}{40^2} + \\ \frac{1}{56^2} + \frac{1}{70^2} + \frac{1}{126^2} + \frac{1}{155^2} + \frac{1}{168^2} + \frac{1}{175^2} + \frac{1}{186^2} + \frac{1}{240^2} + \frac{1}{272^2} + \frac{1}{308^2} + \\ \frac{1}{600^2} + \frac{1}{816^2} + \frac{1}{840^2} + \frac{1}{1316^2} + \frac{1}{3960^2} + \frac{1}{27720^2} + \frac{1}{59220^2} + \frac{1}{769860^2} \end{aligned}$$

Somme de 42 termes distincts.

32 / 50

#### Finalement:

$$\begin{aligned} \frac{3}{5} &= \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \frac{1}{8^2} + \frac{1}{9^2} + \frac{1}{10^2} + \frac{1}{11^2} + \frac{1}{12^2} + \frac{1}{13^2} + \\ \frac{1}{14^2} + \frac{1}{15^2} + \frac{1}{16^2} + \frac{1}{17^2} + \frac{1}{20^2} + \frac{1}{21^2} + \frac{1}{24^2} + \frac{1}{28^2} + \frac{1}{30^2} + \frac{1}{31^2} + \frac{1}{34^2} + \frac{1}{40^2} + \\ \frac{1}{56^2} + \frac{1}{70^2} + \frac{1}{126^2} + \frac{1}{155^2} + \frac{1}{168^2} + \frac{1}{175^2} + \frac{1}{186^2} + \frac{1}{240^2} + \frac{1}{272^2} + \frac{1}{308^2} + \\ \frac{1}{600^2} + \frac{1}{816^2} + \frac{1}{840^2} + \frac{1}{1316^2} + \frac{1}{3960^2} + \frac{1}{27720^2} + \frac{1}{59220^2} + \frac{1}{769860^2} \end{aligned}$$

- Somme de 42 termes distincts.
- ② Temps total de calcul en secondes :326.457318 secondes (5.5 minutes environ).

#### Finalement:

$$\frac{3}{5} = \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \frac{1}{8^2} + \frac{1}{9^2} + \frac{1}{10^2} + \frac{1}{11^2} + \frac{1}{12^2} + \frac{1}{13^2} + \frac{1}{14^2} + \frac{1}{15^2} + \frac{1}{16^2} + \frac{1}{17^2} + \frac{1}{20^2} + \frac{1}{21^2} + \frac{1}{24^2} + \frac{1}{28^2} + \frac{1}{30^2} + \frac{1}{31^2} + \frac{1}{34^2} + \frac{1}{40^2} + \frac{1}{156^2} + \frac{1}{106^2} + \frac{1}{155^2} + \frac{1}{168^2} + \frac{1}{175^2} + \frac{1}{186^2} + \frac{1}{240^2} + \frac{1}{272^2} + \frac{1}{308^2} + \frac{1}{1600^2} + \frac{1}{816^2} + \frac{1}{840^2} + \frac{1}{1316^2} + \frac{1}{3960^2} + \frac{1}{27720^2} + \frac{1}{59220^2} + \frac{1}{769860^2}$$

- Somme de 42 termes distincts.
- ② Temps total de calcul en secondes :326.457318 secondes (5.5 minutes environ).
- Aucune information sur l'optimalité.

32 / 50

#### Finalement:

$$\begin{aligned} &\frac{3}{5} = \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \frac{1}{8^2} + \frac{1}{9^2} + \frac{1}{10^2} + \frac{1}{11^2} + \frac{1}{12^2} + \frac{1}{13^2} + \\ &\frac{1}{14^2} + \frac{1}{15^2} + \frac{1}{16^2} + \frac{1}{17^2} + \frac{1}{20^2} + \frac{1}{21^2} + \frac{1}{24^2} + \frac{1}{28^2} + \frac{1}{30^2} + \frac{1}{31^2} + \frac{1}{34^2} + \frac{1}{40^2} + \\ &\frac{1}{56^2} + \frac{1}{70^2} + \frac{1}{126^2} + \frac{1}{155^2} + \frac{1}{168^2} + \frac{1}{175^2} + \frac{1}{186^2} + \frac{1}{240^2} + \frac{1}{272^2} + \frac{1}{308^2} + \\ &\frac{1}{600^2} + \frac{1}{816^2} + \frac{1}{840^2} + \frac{1}{1316^2} + \frac{1}{3960^2} + \frac{1}{27720^2} + \frac{1}{59220^2} + \frac{1}{769860^2} \end{aligned}$$

- Somme de 42 termes distincts.
- ② Temps total de calcul en secondes :326.457318 secondes (5.5 minutes environ).
- Aucune information sur l'optimalité.
- Méthode non généralisable à tous les nombres.

□▶ 4個 ▶ 4 差 ▶ 4 差 ▶ 2 9 9 0 0 0

32 / 50

## Résultats théoriques établis

#### Résultats pour la décomposition en inverses de carrés :

• Pas d'unicité :

$$\begin{aligned} \frac{1}{20} &= \frac{1}{5^2} + \frac{1}{10^2} \\ &= \frac{1}{6^2} + \frac{1}{7^2} + \frac{1}{25^2} + \frac{1}{75^2} + \frac{1}{175^2} + \frac{1}{525^2} \end{aligned}$$

33 / 50

## Résultats théoriques établis

Une infinité de décompositions pour tout nombre différent de 0 et 1 :

• Si  $\frac{1}{2^2}$  est le dernier terme :

$$\frac{1}{2^2} = \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{8^2} + \frac{1}{56^2} + \frac{1}{168^2} + \frac{1}{840^2}$$

• Si  $\frac{1}{m^2}$  est le dernier terme avec m > 2 :

$$m > 2 \Rightarrow \frac{1}{m^2} - \frac{1}{(m+1)^2} < \frac{1}{(m+1)^2}$$

$$m > 2 \Rightarrow \frac{1}{m^2} - \frac{1}{(m+1)^2} < \frac{1}{(m+1)^2}$$
Or:  $\frac{1}{m^2} - \frac{1}{(m+1)^2} = \sum_{k \in I} \frac{1}{k^2}$  avec I fini et  $\forall k \in I, \ k > m+1$ .

Ainsi: 
$$\frac{1}{m^2} = \frac{1}{(m+1)^2} + \sum_{k \in I} \frac{1}{k^2}$$
.

Merci Pour Votre Attention

#### Preuve du théorème 2 :

Soit  $x \in \bigcup_{z \in P_{r-1}}[z, z + \sigma[$ , on suppose que  $x \notin Ac(S)$ . Alors  $x \in [z, z + \sigma[$  pour un certain z dans  $P_{r-1}$ . On dira qu'une somme de la formr  $z + \sum_{t=1}^k s_{i_t}$  avec  $r \le i_1 < i_2 < ... < i_k$  est "minimale" si

$$z + \sum_{t=1}^{k-1} s_{i_t} < x < z + \sum_{t=1}^{k} s_{i_t}$$

(On ne peut pas avoir égalité car  $x \notin Ac(S) \Rightarrow x \notin P(S)$  ).



Soit M l'ensemble des sommes minimales, et supposons que M est fini. Soit m le plus grand indice de tous les  $s_j$  qui apparaissent dans un élément de M, et soit  $p=z+\sum_{k=1}^n s_{j_k}+s_m$  un élément de M qui utilise  $s_m$  (avec  $r\leq j_1< j_2<...< j_n< m$ ). On a donc:

$$z + \sum_{k=1}^{n} s_{j_k} < x < z + \sum_{k=1}^{n} s_{j_k} + \sum_{t=1}^{\infty} s_{m+t}$$

car  $s_m$  est remplaçable dans S. Ainsi, il existe un plus petit  $d \ge 1$  tel que  $x < p' = z + \sum_{k=1}^n s_{j_k} + \sum_{t=1}^d s_{m+t}$ . Par minimalité de p', p' est "minimale" et utilise  $s_{m+d}$  avec m+d > m, ce qui contredit la définition de m. D'où, M est infinie.

37 / 50

Posons donc  $\delta = \inf \{ p - x | p \in M \}$ . Comme  $x \notin Ac(S)$ ,  $\delta > 0$ . Il existe  $p_1, p_2, \ldots \in M$  tel que  $p_n - x < \delta + \delta/2^n$ . D'après 1, il existe c tel que  $n \geq c \Rightarrow s_n < \frac{\delta}{2}$ . De plus, il existe w tel que  $n \geq w$  implique que  $p_n$  utilise un  $s_k$  avec  $k \geq c$  (car seulemnt un nombre fini des  $p_j$  peuvent être formés à partir des  $s_k$  avec  $k_i$ c). Ainsi on peut écrire  $p_w = z + \sum_{j=1}^n s_{k_j}$  avec  $k_n \geq c$ . Donc:

$$p_w - s_{k_n} - x > p_w - \frac{\delta}{2} - x \ge \delta - \frac{\delta}{2} = \frac{\delta}{2} > 0$$

Ce qui contredit le fait que  $p_w$  est "minimale". Ainsi,  $x \in Ac(S)$  et on a l'inclusion:

$$\cup_{z\in P_{r-1}}[z,z+\sigma[\subset Ac(S).$$

#### Inclusion réciproque:

Soit  $x \in Ac(S)$ , on suppose que  $x \notin \bigcup_{z \in P_{r-1}} [z,z+\sigma[$ . Donc, x < 0,  $x \ge \sum_{k=1}^\infty s_k$ , ou bien il existe z et z' dans  $P_{r-1}$  tels que  $z+\sigma \le x < z'$  et aucun élément de  $P_{r-1}$  n'appartient à l'intervalle  $[z+\sigma,z'[$ . Les 2 premiers cas impliquent que  $x \notin Ac(S)$  donc on peut supposer le troisième cas vrai. Il existe donc  $\delta > 0$  tel que  $x \le z' - \delta$  (\*).

39 / 50

Soit p un élément P(S). Alors il existe m et n tels que  $p = \sum_{t=1}^m s_{i_t} + \sum_{u=1}^n s_{j_u}$  avec  $1 \leq i_1 < ... < i_m \leq r-1 < j_1 < ... < j_n$ . Ainsi,  $p \in [z^*, z^* + \sigma[$  avec  $z^* = \sum_{t=1}^m s_{i_t}$ . D'où, tout élément p de P(S) appartient à un intervalle  $[z^*, z^* + \sigma[$  pour un certain  $z^* \in P_{r-1}$ , donc si p est supérieur à x, il est supérieur à  $x + \delta$ , car  $\notin [z + \sigma, z'[$  et par (\*) on a :

$$p > x \in [z + \sigma, z'] \Rightarrow p \ge z' \ge x + \delta$$

.

Cela contredit l'hypothèse  $x \in Ac(S)$ , d'où l'inclusion réciproque.

#### Preuve du théorème 3 :

D'après le théorème 2, on a

$$Ac(S) = \bigcup_{z \in P_{r-1}} [z, z + \sigma[$$

où  $P_{r-1} = P((s_1,...,s_{r-1}))$   $(P_0 = \{0\})$  et  $\sigma = \sum_{k=r}^{+\infty} s_k$ . Soit  $z = \sum_{k=1}^{u} s_{i_k}$  et  $z' = \sum_{k=1}^{v} s_{j_k}$  deux sommes finies distinctes de termes distincts de S avec  $1 \le i_1 < ... < i_u \le r-1$  et  $1 < j_1 < ... < j_v \le r-1$ , on peut supposer sans perte de généralité que  $z \ge z'$ . Alors, ou bien il existe un plus petit  $m \ge 1$  tel que  $i_m \ne j_m$ , ou bien  $i_k = j_k$  pour k = 1,2,...,v et u > v.

◆□▶◆□▶◆■▶◆■▶ ● 900

41 / 50

Dans le premier cas, on a:

$$z = \sum_{k=1}^{u} s_{i_k}$$
 $= \sum_{k=1}^{m-1} s_{j_k} + \sum_{k=m}^{u} s_{i_k}$ 
 $> \sum_{k=1}^{m-1} s_{j_k} + \sum_{k=1}^{\infty} s_{i_m+k}$ 

car  $s_{i_m}$  n'est pas remplaçable dans S

$$\geq z' + \sigma$$

car  $j_m \geq i_m + 1$ .



Dans le second cas, on a:

$$z = \sum_{k=1}^{u} s_{i_k}$$

$$= \sum_{k=1}^{v} s_{j_k} + \sum_{k=v+1}^{u} s_{i_k}$$

$$> \sum_{k=1}^{v} s_{j_k} + \sum_{k=1}^{\infty} s_{i_{v+1}+k}$$

car  $s_{i_{\nu+1}}$  n'est pas remplaçable dans S

$$\geq z' + \sigma$$

car  $i_{v+1} + 1 < i_u + 1 < r$ .



Ainsi, dans tous les cas,  $z > z' + \sigma$ .

Toutes deux sommes distinctes de  $P_{r-1}$  sont séparées d'au moins  $\sigma$ , et donc tout élément z de  $P_{r-1}$  définitt un intervalle  $[z, z + \sigma[$  disjoint de tout autre intervalle  $[z', z' + \sigma[$  avec  $z \neq z' \in P_{r-1}$ .

Ainsi  $Ac(S) = \bigcup_{z \in P_{r-1}} [z, z + \sigma[$  est l'union disjointe d'exactement  $2^{r-1}$  d'intervalles semi-ouverts de longueur  $\sum_{k=r}^{\infty} s_k$  (car il existe exactement  $2^{r-1}$  sommes distinctes dans  $P_{r-1}$ ).

#### Preuve du lemme 1:

Si  $\sum_{k=1}^{+\infty} s_k = +\infty$ , le résultat est immédiat. Suposons donc que  $\sum_{k=1}^{+\infty} s_k < +\infty$ . On a :

$$n \ge m \Rightarrow s_{n+k} \ge \frac{1}{2} s_{n+k-1}$$

$$\Rightarrow \sum_{k=1}^{+\infty} s_{n+k} \ge \frac{1}{2} \sum_{k=1}^{+\infty} s_{n+k-1} = \frac{1}{2} s_n + \frac{1}{2} \sum_{k=1}^{+\infty} s_{n+k}$$

$$\Rightarrow s_n \le \sum_{k=1}^{+\infty} s_{n+k}$$

D'où le résultat.



#### Preuve du lemme 2:

$$k \le \left(2^{1/p} - 1\right)^{-1} \Rightarrow \frac{1}{k} \ge 2^{1/p} - 1$$
$$\Rightarrow \left(1 + \frac{1}{k}\right)^{p} \ge 2$$
$$\Rightarrow k^{-p} \ge 2(k+1)^{-p}$$

Par hypothèse,  $\sum_{j=k+1}^{+\infty} j^{-p} \ge k^{-p}$  D'où.

$$\sum_{j=k+2}^{+\infty} j^{-p} \ge k^{-p} - (k+1)^{-p} \ge 2(k+1)^{-p} - (k+1)^{-p} = (k+1)^{-p}.$$

#### Preuve du lemme 3:

$$r \ge k \Rightarrow r \ge \left(2^{1/p} - 1\right)^{-1}$$
$$\Rightarrow \frac{1}{r} \le 2^{1/p} - 1$$
$$\Rightarrow \left(1 + \frac{1}{r}\right)^p \le 2$$
$$\Rightarrow r^{-p} \ge 2(r+1)^{-p}$$

D'après le lemme 1,  $r^{-p}$  est remplaçable dans  $H^p$  pour tout  $r \ge k$ .

47 / 50

#### **Algorithme Glouton**

```
from fractions import Fraction
import math
def glouton(nbre, rang, card, p):
    if nbre<0: ###Erreurs de calcul sur les grands nombres###
        return glouton(nbre+Fraction(1,(rang-1)**p),rang+1,card,p)
    if nbre==0:
        return []
    elif card==0:
        return []
        k=math.ceil((1/nbre)**(1/p))
        k=max(k,rang)
        return [k] + glouton(nbre-Fraction(1,k**p),k+1,card-1,p)
```

48 / 50

## Algorithme 2 (Partie 1)

```
from fractions import Fraction
def decompose(nbre,card,rang,puiss):
    if nbre==0:
        return True,[]
    if card==1:
        p=int((1/nbre)**(1/puiss))
        if p**puiss == 1/nbre and p>=rang:
            return True,[int((1/nbre)**(1/puiss))]
            return False,[]
```

## Algorithme 2 (Partie 2)

```
else:
        x=max(rang, int((1/nbre)**(1/puiss))+1)
        while x**puiss < card/nbre:
            y=nbre-Fraction(1,x**puiss)
            d=decompose(y,card-1,x+1,puiss )
            if d[0]:
                return True,[x]+ d[1]
            x=x+1
        return False,[]
def graham(nbre,rang,puiss):
    n=1
    while not decompose(nbre,n,rang,puiss)[0]:
        n+=1
    return decompose(nbre,n,rang,puiss)[1]
```